雑学

雑学

波動関数

モノの最小単位が粒子なのか波動なのかという問題に『量子力学』が出した結論がモノの最小単位は粒子性と波動性を併せ持つというとんでもないものだったんだね。世界の構造を理解するのにはその考え方が(今のところ)適しているということで現在の物理学では基本概念となっちゃった。アナログvsデジタルの戦いに一つの結論が出たのかな。
雑学

シュレティンガーさんに行く前に

量子力学の波と粒の併せ持ちという考えかたを土台とするとそれまでの物理学の世界では考えられなかった世界が広がってしまうんだね。理論的に正しければ『正解』とするという数学的要素が増えちゃった。数学はあくまでも言語、物理学がそれに頼っちゃうのはどうかとは思うんだけど人間の想像の翼が認識の壁を越えちゃったってことかもしれない。
雑学

Δt=0 ΔE=∞

Δt=0 ΔE=∞という仮説は物質・反物質なんていうSFの世界を現実の世界に(可能性として)導き出してしまった。それまでにも(相対論でも量子論でも)何もないとされていた宇宙にじつは何かが詰まっているという仮説は出ていたんだけど今度は宇宙は反粒子で埋められているなんて説まで出るようになってきたんだ。
スポンサーリンク
雑学

0と∞と特異点

時間とエネルギーの不確定性を前回書いたけど相対論にしても量子論にしても理論先行っていう形になっちゃっているように思えるね。実験・観測装置が技術的に追いついていないってこともあるだろうけど理論が『数学』主導になっているからかもしれない。もともと『数学』は『言語』。言語の持つ限界ってことなのかもしれないんだ。
雑学

まだある不確定

すこし量子力学の不確定性原理から脱線してみよう。量子力学は代数学からの出発。だからぼくたちのいる三次元空間を理解するのに還元主義の手法をとっているんだね。わかりやすいように三次元を二次一次空間の積み重ねって表し方で。では、これを伸ばして四次元空間に運用したらどうなるだろう?エネルギーの不確定さが出てこないだろうか?
雑学

ハイゼンベルグ

観測者効果って言われる実験科学の持つ不確実さは昔から言われていたんだ。モノを観測しようとすると観測対象物に影響を与えちゃうっていうことは当たり前のこと。物理学じゃ当然考慮に入れられているよね。ところが 量子の観測をしようとすると対象物があまりに小さく軽すぎるから 観測者効果が収拾がつかなくなってくるんだ。
雑学

不確定性原理

『不確定性原理」。どこかで聞いたことがある人が多いんじゃないかな。モノの位置と運動量は厳密には確定できないという『?』が飛びまくる説だよね。確かに古典物理学の時代から観測者効果なんて観測の精度の問題は議論されていたけど量子という特殊(小さすぎる)なものの研究に観測者効果が当てはまるんだろうか?
雑学

古典物理学から量子物理学へ

1:加速度運動している原子内の電子はなぜ安定しているのか? 2:水素原子のスペクトルはなぜ整数倍となる振動数になるのか?この二つの疑問に答えるために量子論はスタートしたといってもいいんじゃないかな。最小単位への挑戦がますますエスカレートしていったってことかもしれない。現在でもその挑戦は続いているんだね。
雑学

量子ってなんだろう?

波・物質・エネルギーがじつはアナログ(連続体)じゃなくてデジタル(不連続体)じゃないのか? って議論がいろいろな研究で持ち上がってきた。これまで連続体だと思われていたもの一つ一つに疑問を投げかけていったわけだ。その結果 連続体として考えるとどうしても不具合の出る現象を不連続体と考えることで光明を見出す事案も出て来た。
雑学

量子論の黎明期

量子論の黎明期がいつだったのかについてはいろいろな意見があると思う。ただ 初めはモノの最小単位を考察した古代ギリシャ時代の発想を多くの実験・研究の結果 再構築した量子力学。そして そこから派生して出てくる多くの疑問とそれ以外の研究の組み合わせから最小単位という概念を作り上げていった時代こそが黎明期だったのかもしれない。
スポンサーリンク
タイトルとURLをコピーしました